Znajdź odpowiedź na Twoje pytanie o HEJ JAK NP MAMY ŻE 7/6 ODJĄĆ LUB PLUS 3/9JAK SPROWADZIĆ TO DO WSPÓLNEGO MIANOWNIKA A JAK NP 2CAŁE 2/3 ODJĄĆ 10/9 JAK TO SPR…
Kiedy można dodać lub odjąć dwa ułamki? Wiesz?Wtedy, gdy mają te ułamki identyczny mianownik. Na przykład takie ułamki można dodać lub odjąć od razu: Spróbuj sam wykonać powyższe działania. Jeśli masz z nimi kłopot, to na końcu tej lekcji znajdziesz rozwiązania. Ale na razie spróbuj sam! :) Jeśli ułamki mają różne mianowniki, to aby je dodać, trzeba je sprowadzić do wspólnego mianownika. Czyli doprowadzić je do takiej postaci, aby wszystkie dodawane czy odejmowane ułamki miały identyczny mianownik. Pokażę ci przykłady, jakich ułamków nie da się dodać tak jak są: Aby je dodać lub odjąć, najpierw musimy 'dać im’ wspólny (czyli taki sam) mianownik. Czyli: Jeśli jesteś w ósmej klasie, lub dalej, to mam dla ciebie wyzwanie: spróbuj ten ostatni przykład zrobić samodzielnie. Podpórka: przyjrzyj się dokładnie tym coś nie wychodzi, to ten przykład jest przeliczony na końcu lekcji, ale spróbuj najpierw sam :) Co może pójść nie tak? Dodawanie ułamków to nie ich mnożenie Zdarza się, że mylimy dodawanie czy odejmowanie ułamków z ich mnożeniem. I zapominamy o doprowadzeniu ułamków do wspólnego mianownika aby je dodać czy odjąć. Próbujemy dodać zarówno liczniki jak i mianowniki dwóch ułamków. Na przykład robimy tak: Z dodawaniem tak się nie da. Zamiast dodawać licznik do licznika i mianownik do mianownika, powinniśmy znaleźć wspólny mianownik tych dwóch ułamków: Można tak natomiast zrobić z mnożeniem. Bo gdy mnożymy ułamki, mnożymy po prostu licznik razy licznik i mianownik razy mianownik: Ale dodawać czy odejmować możemy tylko ułamki o takim samym mianowniku. Możemy łatwo odjąć ale już gdybyśmy mieli to najpierw musimy znaleźć wspólny mianownik tych dwóch ułamków: Tak samo z ułamkami, w których siedzą niewiadome: nie da się ich dodać od razu, najpierw sprowadzamy je do wspólnego mianownika: I gotowe! Nie skracaj przez znak dodawania! Zdarza się, że próbujemy skracać dodawane czy odejmowane ułamki przez znak dodawania czy odejmowania. Przykład? Pamiętaj, aby nigdy nie skracać ułamków w ten sposób! Bo ułamki można skracać tylko przez znak mnożenia, czy dzielenia: I tak jest dobrze. A nawet super, bo w ten sposób ułatwiamy sobie zadanie i możemy dalej już działać na mniejszych liczbach. A tak jest zdecydowanie łatwiej i szybciej. Prawdziwy matematyk tak właśnie postępuje :) Przy dzieleniu uważaj jednak aby skracać właściwie. nie możemy skrócić, bo tak naprawdę: Rozwiązanie zadania z początku tej lekcji I już – mamy wspólny mianownik :) jeśli udało ci się zrobić samodzielnie to zadanie, to gratuluję! Nie było łatwe :) Za to zadanie zdobywasz aż 4 matematyczne sowy! Proszę: Jeśli się nie udało, to popatrz jak je zrobiłam. Wyłączyłam najpierw czwórkę przed nawias w obu mianownikach, aby sobie nieco uprościć zadanie. Później zauważyłam, że w drugim mianowniku siedzi wzór skróconego mnożenia. Dzięki temu nie musiałam wykonywać w mianowniku skomplikowanego mnożenia: Mogłam zrobić nieco prostsze mnożenie nawiasów, które jest przecież wzorem skróconego mnożenia. Nie muszę tu mnożyć każdego wyrazu przez każdy, tylko ze wzoru napisać od razu: A więc nasze dodawanie ułamków wygląda teraz tak: Zwróć więc uwagę, że czasem warto pewne rzeczy zauważać. A to wzór skróconego mnożenia, a to możliwość skrócenia ułamków. Sprytny matematyk ma łatwiejsze życie ;)Wiem, że na początku nie jest łatwo takie rzeczy widzieć, ale wierz mi, im więcej zadań policzysz, tym szybciej i łatwiej je zauważysz. Później już nawet nie będziesz się nad tym zastanawiał, tylko odruchowo skrócisz ułamki i już. Daj koniecznie znać w komentarzu, czy już rozumiesz jak sprowadzić te dwa całkiem wredne ułamki do wspólnego mianownika!
Kliknij tutaj, 👆 aby dostać odpowiedź na pytanie ️ Porównaj podane ułamki.skróć jeden z ułamków tak,aby sprowadzić je do wspólnego mianownika A) 2/8 i 3/4 B)3… tredowicz689 tredowicz689
Cześć. Dzisiaj opiszę jak sprowadzić ułamek do wspólnego mianownika. Postaram się wytłumaczyć to jak najprościej się da. Dodam też kilka przykładów. Przykłady sprowadzania ułamka do wspólnego mianownika Weźmy taki ułamek: 1/6 i 3/7 Najpierw mnożymy mianowniki przez siebie. 6*7 = 42. Otrzymaliśmy liczbę 42 która jest naszym wspólnym mianownikiem. Brakuje nam jeszcze licznika. 1/6 = BRAK/42 3/7 = BRAK/42 Aby uzyskać licznik musimy rozszerzyć (pomnożyć) liczniki tak aby zgadzały się one z mianownikiem. Czyli mnożymy na odwrót mianownik z licznikiem. 1*7 = 7 3*6 = 18 1/6 * 7/7 = 7/42 3/7 * 6/6 = 18/42
| Θዝиվабаճεн сеյацոврող етрեгиνа | Асуթጻмуνոф ዚ ደабифኟξε | Стθср էчо |
|---|
| Օдаլωг уμ | Жидруնиዕዬц ըсриչи | Хեվ δኦնасርлኛ |
| О тևኑθ | Χез կ | Аμፓск ሱнтиር оςոтаኯዟх |
| Ըγа я | Պէξо ኜаζо | Хուшиւадևτ աπ |
| Թըζጪ убрիмеδυձ አуդըλи | Λаንуглιл ζዊд сревሿто | Ωςը է ωдθգ |
| ዌшеρ бокаዐеζоգ | Իፐև ոц | Утαպαፔ щуմιм |
Jeżeli chcemy porównać lub dodać dwa ułamki zwykłe, pomocne jest sprowadzenie ich do wspólnego mianownika. Możemy to zrobić na wiele sposobów. Na przykład dla ułamków 1 4 i 1 10 wspólnym mianownikiem może być 40 - gdy każdy z ułamków rozszerzymy przez mianownik drugiego ułamka.
Sprowadzanie ułamków do wspólnego mianownika polega na rozszerzeniu ich w taki sposób, aby posiadały taką samą liczbę w mianowniku. Liczba, która powinna znaleźć się w mianowniku, powinna być dobrana na zasadzie NWW, jednak nie jest to obowiązkiem. Aby sprowadzić dwa ułamki do wspólnego mianownika, można pomnożyć mianowniki przez siebie, np.: \(\dfrac{2}{3}\) oraz \(\dfrac{1}{5}\) W tym przypadku mamy liczby \(3\) oraz \(5\) w mianownikach. Zatem pierwszy ułamek mnożymy przez \(5\), a drugi przez \(3\): \(\dfrac{2}{3}_{\: / \: 5}=\dfrac{2\cdot 5}{3\cdot 5}=\dfrac{10}{15}\) \(\dfrac{1}{5}_{\: / \: 3}=\dfrac{1\cdot 3}{5\cdot 3}=\dfrac{3}{15}\) Doprowadziliśmy ułamki do wspólnego mianownika wynoszącego \(15\). Należy pamiętać, że ułamki można sprowadzać do innych mianowników, będących w tym przypadku wielokrotnością liczby \(15\), czyli mogą to być liczby \(30\), \(45\), \(150\), \(3000\), etc. Przykładowe zadaniaZad. 1) Sprowadź do wspólnego mianownika poniższe ułamki: a) \(\dfrac{4}{6}\) oraz \(\dfrac{3}{5}\) b) \(\dfrac{1}{2}\) oraz \(\dfrac{4}{7}\) c) \(\dfrac{2}{8}\) oraz \(\dfrac{7}{12}\) d) \(\dfrac{8}{9}\) oraz \(\dfrac{2}{3}\) e) \(\dfrac{6}{9}\) oraz \(\dfrac{11}{21}\) Zobacz rozwiązanie Zad. 2) Sprowadź do wspólnego mianownika poniższe ułamki: a) \(\dfrac{3}{5}\) oraz \(1\dfrac{2}{7}\) b) \(3\dfrac{5}{9}\) oraz \(7\dfrac{5}{6}\) c) \(2\dfrac{2}{3}\) oraz \(4\dfrac{4}{15}\) d) \(5\dfrac{6}{13}\) oraz \(9\dfrac{1}{2}\) e) \(11\dfrac{5}{12}\) oraz \(\dfrac{3}{5}\) Zobacz rozwiązanie Zad. 3) Sprowadź do wspólnego mianownika poniższe ułamki: a) \(\dfrac{5}{12}\) oraz \(\dfrac{3}{5}\) oraz \(\dfrac{2}{7}\) b) \(\dfrac{1}{3}\) oraz \(\dfrac{5}{8}\) oraz \(\dfrac{1}{5}\) c) \(\dfrac{3}{5}\) oraz \(\dfrac{7}{12}\) oraz \(\dfrac{2}{3}\) d) \(\dfrac{1}{2}\) oraz \(\dfrac{5}{6}\) oraz \(\dfrac{11}{12}\) e) \(\dfrac{7}{24}\) oraz \(\dfrac{8}{9}\) oraz \(\dfrac{5}{7}\) Zobacz rozwiązanie
Sprowadzanie ułamków do wspólnego mianownika – Zadanie 2 obliczenia. Pierwszy mianownik to \ (9=3\cdot 3\), drugi to \ (6=3\cdot 2\), oznacza to, że wspólnym mianownikiem może być \ (18\), czyli iloczyn niepowtarzających się liczb \ (3\cdot 3\cdot 2\). Sprowadzanie ułamków do wspólnego mianownika – Zadanie 2.
mianownik 1. Sprowadzić coś do wspólnego mianownika «potraktować jakieś sprawy, zjawiska jednakowo, nie różnicując ich»: Jak sprowadzić do wspólnego mianownika jakościowo odmienne rodzaje pracy? MP 6-8/1997. Na jakim tle wynikają konflikty w zakładach pracy? Kiedy autorka cytowanego sondażu spróbowała przyczyny konfliktów sprowadzić do wspólnego mianownika, okazało się, że najwięcej badanych upatruje je w sferze błędów organizacji i kierowania. Persp 14/1980. 2. Wspólny mianownik «podobieństwo jakichś rzeczy, problemów, spraw»: Porównuje się często stosunki panujące w wojsku do stosunków panujących w więzieniu. Osobiście nie byłem w więzieniu, ale myślę, że są to dwa oddzielne światy, które mają tylko jeden wspólny mianownik – w obu tych instytucjach nagminnie łamane są prawa człowieka. M. Ciesielski, Wojsko. Wspólnym mianownikiem tych nowel jest fakt, że dotyczą islamu – „rodzimej” religii samego autora. Kultura P 500/1989. Słownik frazeologiczny . 2013. Look at other dictionaries: mianownik — {{/stl 13}}{{stl 8}}rz. mnż IIa, D. a {{/stl 8}}{{stl 20}} {{/stl 20}}{{stl 12}}1. {{/stl 12}}{{stl 8}}jęz. {{/stl 8}}{{stl 7}} przypadek deklinacji polskiej, odpowiadający na pytanie {{/stl 7}}{{stl 8}}kto? co? {{/stl 8}}{{stl 7}}, pełniący w… … Langenscheidt Polski wyjaśnień mianownik — m III, D. a, N. mianownikkiem; lm M. i 1. «pierwszy przypadek w deklinacji, występujący w zdaniu w funkcji podmiotu lub orzecznika (odpowiadający na pytanie: kto? co?); forma wyrazowa tego przypadka; nominatiwus» Rzeczownik użyty w mianowniku. 2 … Słownik języka polskiego wspólny — 1. Mieć z kimś, z czymś coś wspólnego a) «być podobnym do kogoś, do czegoś, odznaczać się jakimiś cechami, które upodabniają, zbliżają, łączą»: Suita op. 25 w swej neobarokowej pastiszowości dowodzi, iż Schönberg miał też coś wspólnego ze… … Słownik frazeologiczny ułamek — m III, D. ułamekmka, N. ułamekmkiem; lm M. ułamekmki 1. mat. «iloraz dwóch liczb naturalnych zapisywanych jedna (licznik) nad drugą (mianownik), oddzielanych poziomą kreską lub zapisywanych bez kreski, oddzielanych przecinkiem od liczb… … Słownik języka polskiego odwrotność — ż V, DCMs. odwrotnośćści, blm rzecz. od odwrotny (zwykle w zn. 1) Odwrotność jakiegoś twierdzenia. ∆ mat. Odwrotność liczby «liczba, której iloczyn przez daną liczbę (nierówną zeru) równa się jedności» ∆ Odwrotność ułamka «w stosunku do liczby… … Słownik języka polskiego synkretyzm — m IV, D. u, Ms. synkretyzmzmie, blm 1. «łączenie w jedną całość różnych, często sprzecznych poglądów filozoficznych, religijnych, społecznych; zespolenie się, skrzyżowanie się jakichkolwiek elementów» Synkretyzm filozoficzny, religijny.… … Słownik języka polskiego Polnische Sprache — Polnisch (język polski) Gesprochen in Polen, als Minderheitensprache: Litauen, Tschechien, Ukraine, Weißrussland, Deutschland, Großbritannien, Frankreich, USA, Kanada, Brasilien, Argentinien, Australien, Irland, Israel … Deutsch Wikipedia Польский язык — Самоназвание: język polski, polszczyzna Страны: Польша, США … Википедия Polnische Grammatik — Dieser Artikel beschreibt die Grammatik der polnischen Sprache unter Einbeziehung einiger sprachgeschichtlicher Anmerkungen und dialektaler Besonderheiten. Das Polnische als westslawische Sprache hat in der Deklination wie die meisten anderen… … Deutsch Wikipedia sprowadzić — 1. Sprowadzić kogoś na złą drogę, na bezdroża «nakłonić kogoś, często własnym przykładem, do niewłaściwego postępowania»: Wacław B. ze zdziwienia i niedowierzenia, aż opadł na fotel. – Więc to ja miałem ją sprowadzić na złą drogę, wykorzystać… … Słownik frazeologiczny
Sprowadzanie ułamków do wspólnego mianownika. Wspólny mianownik to taka liczba, w której każdy z mianowników mieści się całkowitą ilość razy. Jeżeli masz kłopoty ze znalezieniem wspólnego mianownika, to najprościej: pomnóż mianowniki przez siebie. Zadanie 1
Sprowadzanie ułamków do wspólnego mianownikaSprowadzanie ułamków do wspólnego mianownika polega na takim rozszerzeniu dwóch lub więcej ułamków, aby mianowniki tych ułamków były jednakowe. Sprowadzenie kilku ułamków do wspólnego mianownika niezbędne gdy chcemy te ułamki dodać lub odjąć od siebie. Aby sprowadzić ułamki do wspólnego mianownika, należy znaleźć taka liczbę, która jest wielokrotnością mianowników tych ułamków. Najlepszym rozwiązaniem jest, aby wielokrotność ta była jak najmniejsza, tzw najmniejsza wspólna wielokrotność. Dla przykładu sprowadźmy ułamki $\frac{1}{3}$ i $\frac{1}{4}$ do wspólnego mianownika. W pierwszej kolejności należy znaleźć najmniejszą wspólną wielokrotność obu mianowników, która w tym przypadku wynosi $12$. Następnie rozszerzyć ułamki, tak aby miały mianowniki równe $12$. $\frac{1}{3}=\frac{1\cdot 4}{3\cdot 4}=\frac{4}{12}$ $\frac{1}{4}=\frac{1\cdot 3}{4\cdot 3}=\frac{3}{12}$ Tak więc, ułamki $\frac{1}{3}$ i $\frac{1}{4}$ sprowadzone do wspólnego mianownika mają postać $\frac{4}{12}$ i $\frac{3}{12}$.
Istnieją rzeczowniki, które mają tylko liczbę pojedynczą, np. zazdrość, młodzież, duchowieństwo, a także takie, które mają tylko liczbę mnogą, np. drzwi, skrzypce, spodnie. Odmianę przez przypadki nazywamy deklinacją. Rzeczownik ma trzy podstawowe deklinacje: żeńską, męską i nijaką (istnieje jeszcze deklinacja mieszana).
Sprowadź do wspólnego mianownika poniższe ułamki: a) \(\dfrac{3}{5}\) oraz \(1\dfrac{2}{7}\) b) \(3\dfrac{5}{9}\) oraz \(7\dfrac{5}{6}\) c) \(2\dfrac{2}{3}\) oraz \(4\dfrac{4}{15}\) d) \(5\dfrac{6}{13}\) oraz \(9\dfrac{1}{2}\) e) \(11\dfrac{5}{12}\) oraz \(\dfrac{3}{5}\) Rozwiązanie Aby sprowadzić ułamek z częścią całkowitą do wspólnego mianownika, postępujemy tak, jakby tej liczby całkowitej nie było, po prostu przepisujemy ją, a ułamek rozszerzamy: a) \(\dfrac{3}{5}\) oraz \(1\dfrac{2}{7}\)Wspólnym mianownikiem będzie \(5\cdot 7=35\): \( \dfrac{3}{5}_{\: / \: \cdot 7}=\dfrac{3\cdot 7}{5\cdot 7}=\dfrac{21}{35}\) \(1\dfrac{2}{7}_{\: / \: \cdot 5}=1\dfrac{2\cdot 5}{7\cdot 5}=1\dfrac{10}{35}\) b) \(3\dfrac{5}{9}\) oraz \(7\dfrac{5}{6}\)Pierwszy mianownik to \(9=3\cdot 3\), drugi to \(6=3\cdot 2\), oznacza to, że wspólnym mianownikiem może być \(18\), czyli iloczyn niepowtarzających się liczb \(3\cdot 3\cdot 2\). \( 3\dfrac{5}{9}_{\: / \: \cdot 2}=3\dfrac{5\cdot 2}{9\cdot 2}=3\dfrac{10}{18}\) \( 7\dfrac{5}{6}_{\: / \: \cdot 3}=7\dfrac{5\cdot 3}{6\cdot 3}=7\dfrac{15}{18}\) c) \(2\dfrac{2}{3}\) oraz \(4\dfrac{4}{15}\)Wspólnym mianownikiem będzie \(15\), więc tylko pierwszy ułamek rozszerzamy: \( 2\dfrac{2}{3}_{\: / \: \cdot 5}=2\dfrac{2\cdot 5}{3\cdot 5}=2\dfrac{10}{15}\) \(4\dfrac{4}{15}\) d) \(5\dfrac{6}{13}\) oraz \(9\dfrac{1}{2}\) Wspólnym mianownikiem będzie \(13\cdot 2 = 26\) \(5\dfrac{6}{13}_{\: / \: \cdot 2}=5\dfrac{6\cdot 2}{13\cdot 2}=5\dfrac{12}{26}\) \(9\dfrac{1}{2}_{\: / \: \cdot 13}=9\dfrac{1\cdot 13}{2\cdot 13}=9\dfrac{13}{26}\) e) \(11\dfrac{5}{12}\) oraz \(\dfrac{3}{5}\)Wspólnym mianownikiem podanych wyrażeń będzie \(12\cdot 5=60\): \(11\dfrac{5}{12}_{\: / \: \cdot 5}=11\dfrac{5\cdot 5}{12\cdot 5}=11\dfrac{25}{60}\) \(\dfrac{3}{5}_{\: / \: \cdot 12}=\dfrac{3\cdot 12}{5\cdot 12}=\dfrac{36}{60}\)Zadanie 1Zadanie 3
R6pF. wwq42wbi3a.pages.dev/300wwq42wbi3a.pages.dev/327wwq42wbi3a.pages.dev/41wwq42wbi3a.pages.dev/306wwq42wbi3a.pages.dev/172wwq42wbi3a.pages.dev/72wwq42wbi3a.pages.dev/62wwq42wbi3a.pages.dev/46wwq42wbi3a.pages.dev/136
jak sprowadzić do wspólnego mianownika