Wartość wyrażenia 2 pierwiastek a - a do potęgi 2 + 2a ( a-2) dla a = 4 wynosi A.4 B.20 C. 36 D. -12 Proszę o… Natychmiastowa odpowiedź na Twoje pytanie. mrowa93 Użytkownik Posty: 162 Rejestracja: 8 wrz 2011, o 15:50 Płeć: Mężczyzna Lokalizacja: Stalowa Wola Podziękował: 4 razy podnoszenie pierwiastka do potęgi \(\displaystyle{ \sqrt{5}^{7}}\) ares41 Użytkownik Posty: 6499 Rejestracja: 19 sie 2010, o 08:07 Płeć: Mężczyzna Lokalizacja: Kraków Podziękował: 142 razy Pomógł: 922 razy podnoszenie pierwiastka do potęgi Post autor: ares41 » 9 paź 2011, o 09:44 Wskazówka: \(\displaystyle{ 7=2 \cdot 3+1 \\ \left( \sqrt{a} \right) ^2=a}\) mrowa93 Użytkownik Posty: 162 Rejestracja: 8 wrz 2011, o 15:50 Płeć: Mężczyzna Lokalizacja: Stalowa Wola Podziękował: 4 razy podnoszenie pierwiastka do potęgi Post autor: mrowa93 » 9 paź 2011, o 09:48 ok wiem że jeśli podniesiemy jakiś pierwiastek do kwadratu to otrzymamy liczbę podpierwiastkową ,ale nie wiem co z tym dalej robić będzie \(\displaystyle{ 125\sqrt{5}}\) czy źle myśle ??? mrowa93 Użytkownik Posty: 162 Rejestracja: 8 wrz 2011, o 15:50 Płeć: Mężczyzna Lokalizacja: Stalowa Wola Podziękował: 4 razy podnoszenie pierwiastka do potęgi Post autor: mrowa93 » 9 paź 2011, o 15:02 ok a jak wyliczyć jeszcze z tego \(\displaystyle{ S_{n}}\) mając dane : \(\displaystyle{ q=\sqrt{5}}\) \(\displaystyle{ a_{n}=625\sqrt{5}}\) \(\displaystyle{ n=8}\) \(\displaystyle{ a_{1}=5}\) Zadania – Pierwiastki i Potęgi. Przygotowanie do matury – Pierwiastki i Potęgi – należą do podstawowych działań matematycznych zaraz po dodawaniu, odejmowaniu, mnożeniu i dzieleniu. Potęgowanie jest skróconym zapisem mnożenia jednakowych liczb, z kolei pierwiastkowanie jest odwrotnością potęgowania. Więcej na temat potęg i 4 pierwiastki z 2 do potęgi 3 zielony : Heja Pomoże ktoś z tym? (4√2)3 Wiem, że jest to łatwe ale dawno już nie robiłem nic do potęgi 3 i...po prostu nie wiem jak to ugryźć. 28 lis 15:36 razor: =43*(√2)3 = 64*2√2 = 128√2 28 lis 15:37 J: = 43*(√2)3 = 64*2√2 = 128√2 28 lis 15:40 zielony : Pięknie Ci dziękuje Nawet nie wiesz jak mi to wszystko rozjaśniło. Bo jak jest do kwadratu to pierwiastek się skraca,racja? 28 lis 15:41 razor: zależy jaki pierwiastek 28 lis 15:42 J: ... nic się nie skraca ...(√2)3 = (√2)2*√2 = 2√2 .. 28 lis 15:42 zielony : Chodzi mi o taki przykład: (8√2)2 28 lis 15:43 J: = 82*(√2)2 = 64*2 = 128 28 lis 15:44 razor: trzeba się nauczyć działań na potęgach (√2)2 = (21/2)2 = 22*1/2 = 21 = 2 (√2)3 = 23*1/2 = 23/2 = 21*21/2 = 2√2 28 lis 15:45 zielony : Dziękuje raz jeszcze 28 lis 15:47
więc.. pierwiastka z 7 nie da się obliczyć, ae jeśli potem weźmiemy go do potęgi drugiej to wyjdzie to samo.. więc √7 to potęgi 2 = 7 a więc działanie 2*√7 (do drugiej) ..to jest 2 * 7 = 14 ale jeśli to wygląda tak: (2*√7) to 2 .. to wtedy wygląda inaczej, bo każdy w nawiasie musimy pomnożyć przez dwa i wyjdzie 4*7 = 28:)
Mavcus Użytkownik Posty: 4 Rejestracja: 2 mar 2013, o 20:44 Płeć: Mężczyzna Lokalizacja: Polska Jak obliczać wyrażenie podniesione do potęgi pierwiastek z 2 Oblicz \(\displaystyle{ (2- \sqrt{3}) ^{ \sqrt{2} } (2+ \sqrt{3}) ^{ \sqrt{2} }}\) Chcę żeby ktoś wytłumaczył mi to zadanie(nie rozwiązał :] ). Szukałem go w internecie ale nie udało mi się znaleźć. Konkretnie moim problemem jest ta potęga, nie mam pojęcia jak to zacząć. Pozdrawiam Ostatnio zmieniony 2 mar 2013, o 20:59 przez Jan Kraszewski, łącznie zmieniany 1 raz. Powód: Temat umieszczony w złym dziale. Mavcus Użytkownik Posty: 4 Rejestracja: 2 mar 2013, o 20:44 Płeć: Mężczyzna Lokalizacja: Polska Jak obliczać wyrażenie podniesione do potęgi pierwiastek z 2 Post autor: Mavcus » 2 mar 2013, o 21:03 Dziękuję za szybką odp. Chodziło mi jednak o to jak wyliczyć liczbę np. \(\displaystyle{ 3 ^{ \sqrt{3} }}\)-- 2 mar 2013, o 21:06 --Jan Kraszewski pisze:\(\displaystyle{ a^c\cdot b^c=(a\cdot b)^c}\) JK Z tego co pan napisał wnioskuję, że to \(\displaystyle{ (2- \sqrt{3}) ^{ \sqrt{2} } (2+ \sqrt{3}) ^{ \sqrt{2} }}\) można zapisać jako \(\displaystyle{ ((2- \sqrt{3})(2+ \sqrt{3})) ^{ \sqrt{2} }}\). yorgin Użytkownik Posty: 12762 Rejestracja: 14 paź 2006, o 12:09 Płeć: Mężczyzna Lokalizacja: Kraków Podziękował: 17 razy Pomógł: 3440 razy Jak obliczać wyrażenie podniesione do potęgi pierwiastek z 2 Post autor: yorgin » 2 mar 2013, o 21:16 Potęgę \(\displaystyle{ 3^\sqrt{3}}\) definiuje się jako granicę \(\displaystyle{ \lim\limits_{n\to\infty}3^{a_n}}\) gdzie \(\displaystyle{ a_n}\) jest ciągiem liczb wymiernych zbieżnym do \(\displaystyle{ \sqrt{3}}\). Ta wartość nie jest wyliczalna "ręcznie". Mavcus Użytkownik Posty: 4 Rejestracja: 2 mar 2013, o 20:44 Płeć: Mężczyzna Lokalizacja: Polska Jak obliczać wyrażenie podniesione do potęgi pierwiastek z 2 Post autor: Mavcus » 2 mar 2013, o 21:26 W takim razie patrząc na zadanie które podałem wystarczy, że wymnożę nawiasy i zostawię tą potęgę poza nawiasem, tak? bartek118 Użytkownik Posty: 5974 Rejestracja: 28 lut 2010, o 19:45 Płeć: Mężczyzna Lokalizacja: Toruń Podziękował: 15 razy Pomógł: 1251 razy Jak obliczać wyrażenie podniesione do potęgi pierwiastek z 2 Post autor: bartek118 » 2 mar 2013, o 21:41 piasek101 pisze:tak Nie. Trzeba jeszcze wykonać działania: \(\displaystyle{ ((2- \sqrt{3})(2+ \sqrt{3})) ^{ \sqrt{2} } = (4-3) ^{ \sqrt{2} } = 1^{ \sqrt{2} } = 1}\) Mavcus Użytkownik Posty: 4 Rejestracja: 2 mar 2013, o 20:44 Płeć: Mężczyzna Lokalizacja: Polska Jak obliczać wyrażenie podniesione do potęgi pierwiastek z 2 Post autor: Mavcus » 2 mar 2013, o 23:23 piasek101 pisze:gotowizna nie jest moją specjalnością Jakbyś przeczytał mój temat to byś wiedział, że nie proszę o gotowca... Uczę się do matury dodatkowo robiąc zadania. To nie jest jakieś zadanie domowe, którego nie chce mi się zrobić bo lepiej wrzucić na neta. Dziękuje, za pomoc normalnym ludziom. piasek101 Użytkownik Posty: 23388 Rejestracja: 8 kwie 2008, o 22:04 Płeć: Mężczyzna Lokalizacja: piaski Podziękował: 1 raz Pomógł: 3230 razy Jak obliczać wyrażenie podniesione do potęgi pierwiastek z 2 Post autor: piasek101 » 3 mar 2013, o 17:55 Mavcus pisze:piasek101 pisze:gotowizna nie jest moją specjalnością Jakbyś przeczytał mój temat to byś wiedział, że nie proszę o gotowca... No to właśnie go nie napisałem. I masz pretensje ?
Wykonaj mnożenie i dzielenie pierwiastków. Jeśli masz mnożenie liczby przez wyrażenie z pierwiastkiem to wymnażasz liczby całkowite stojące poza znakiem pierwiastka. Jeśli masz możliwość skracania to możesz oczywiście to uczynić. Tylko pamiętaj skracasz liczby całkowite poza znakiem pierwiastka. Zadanie.
Wskaż a następnie wypisz zbiór jonów, które nie mogą być reduktorami:F- , NO3- , Br- , Cr2O72- , SO32- , MnO4- , H+ , Mn2+ , Cr(OH)3 , Al3+ , NO2- , ClO3-Proszę z wytłumaczeniem o co chodzi w zadaniu. Answer Potęgi są skróconym zapisem wielokrotnego mnożenia elementu przez siebie. Przykłady: 3^2 = 3\cdot 3 = 9; 2^3 = 2\cdot 2 \cdot 2= 8; 5^4 = 5\cdot 5\cdot 5\cdot 5 = 625; Potęgując liczby ujemne, kierujemy się zasadą, że potęga parzysta daje wynik dodatni, a potęga nieparzysta wynik ujemny. (-3)^2 = (-3)\cdot (-3) = 9
W poprzednich częściach zajmowaliśmy się potęgowaniem i pierwiastkowaniem liczb. Teraz, dzięki umiejętności zapisywania pierwiastka za pomocą potęgi, połączymy oba te działania. W jaki sposób? Na początku spójrz na przykład. Weźmy liczbę $(\sqrt{16})^{2}$. Chcemy ją jakoś policzyć. Jak? Są na to 2 sposoby: Sposób I. Korzystając z własności pierwiastków: $$(\sqrt{16})^{2}=\sqrt{16}\cdot\sqrt{16} = \sqrt{16\cdot16} = \sqrt{256}= 16$$ Ten mechanizm był wytłumaczony tutaj i tutaj. Sposób II. Zamieniamy liczbę $\sqrt{16}$ na potęgę o wykładniku wymiernym, tzn.: $$(\sqrt{16})^{2} = \left(16^{\frac{1}{2}}\right)^2=16^{\frac{1}{2}\cdot 2} = 16$$ Konstrukcja $(\sqrt{a})^{2}$ często pojawia się w różnych zadaniach, zapamiętaj więc, że $(\sqrt{a})^{2}=a$. Zachodzi to również dla wyższych pierwiastków i potęg, np. $(\sqrt[3]{a})^{3}=a$, $~(\sqrt[4]{a})^{4}=a$, należy pamiętać jednak o tym, żeby stopień pierwiastka był równy wykładnikowi potęgi. Przykłady. $$(4\sqrt{2})^{2}\stackrel{\text{I}}{=} (\sqrt{16\cdot2})^{2} = (\sqrt{32})^{2} = 32$$ $$(4\sqrt{2})^{2}= 4^{2}\cdot(\sqrt{2})^{2} \stackrel{\text{II}}{=} 16\cdot2 = 32$$ $$(\sqrt{7})^{3}\stackrel{\text{I}}{=} \sqrt{7\cdot7\cdot7} = \sqrt{7^{2}}\cdot\sqrt{7} = 7\sqrt{7}$$ Zadania Zadanie 1. Liczba $\sqrt[3]{3\sqrt{3}}$ jest równa $$A. \sqrt[6]{3},~~B. \sqrt[4]{3},~~C. \sqrt[3]{3},~~ D. \sqrt{3}$$ Korzystając ze wzorów na działaniach na potęgach i pierwiastkach mamy: $$\sqrt[3]{3\sqrt{3}} = \sqrt[3]{3\cdot3^{\frac{1}{2}}}=\sqrt[3]{3^{1+\frac{1}{2}}}=\sqrt[3]{3^\frac{3}{2}}=\left(3^{\frac{3}{2}}\right)^{\frac{1}{3}}=3^{\frac{3}{2}\cdot\frac{1}{3}}=3^{\frac{1}{2}}=\sqrt{3}$$ Odpowiedź: D. Zadanie 2. Liczba $3^{\frac{8}{3}}\cdot\sqrt[3]{9^{2}}$ jest równa $$A. 3^{3},~~B. 3^{\frac{32}{9}},~~C. 3^{4},~~ D. 3^{5}$$ $$3^{\frac{8}{3}}\cdot\sqrt[3]{9^{2}}=3^{\frac{8}{3}}\cdot\sqrt[3]{(3^{2})^{2}}=3^{\frac{8}{3}}\cdot\sqrt[3]{3^{4}}=3^{\frac{8}{3}}\cdot3^{\frac{4}{3}}=3^{\frac{8+4}{3}}=3^{\frac{12}{3}}=3^{4}$$ Odpowiedź: C. Zadanie 3. Liczba $7^{\frac{4}{3}}\cdot\sqrt[3]{7^{5}}$ jest równa $$A. 7^{\frac{4}{5}},~~B. 7^{3},~~C. 7^{\frac{20}{9}},~~ D. 7^{2}$$ $$7^{\frac{4}{3}}\cdot\sqrt[3]{7^{5}}=7^{\frac{4}{3}}\cdot7^{\frac{5}{3}}=7^{\frac{4+5}{3}}=7^{\frac{9}{3}}=7^{3}$$ Odpowiedź: B. Zadanie 4. Oblicz: $(\sqrt{2})^{2},~~(\sqrt{17})^{4},~~(\sqrt{15})^{2},~~(\sqrt[3]{4})^{3},~~(\sqrt{18})^{4},~~(\sqrt{9})^{5},~~(\sqrt[5]{32})^{3},~~(\sqrt[4]{16})^{5},~~(\sqrt{16})^{5}$ 1. $$(\sqrt{2})^{2} = 2$$2. $$(\sqrt{17})^{4} = ({17}^\frac{1}{2})^{4}=17^{\frac{1}{2}\cdot4}= 17^{2} = 289$$ 3. $$(\sqrt{15})^{2} = 15$$ 4. $$(\sqrt[3]{4})^{3} = 4$$ 5. $$(\sqrt{18})^{4}=({18}^\frac{1}{2})^{4}= 18^{\frac{4}{2}} = 18^{2} = 324$$ 6. $$(\sqrt{9})^{5} = \sqrt{9\cdot9\cdot9\cdot9\cdot9}=\sqrt{9\cdot9}\cdot\sqrt{9\cdot9}\cdot\sqrt{9} = 9\cdot9\cdot\sqrt{9} = 81\sqrt{9}$$ 7. $$(\sqrt[5]{32})^{3} = (\sqrt[5]{2^{5}})^{3} = 2^{3} = 8$$ 8. $$(\sqrt[4]{16})^{5} = (\sqrt[4]{2^{4}})^{5} = 2^{5} = 32$$ 9. $$(\sqrt{16})^{5} = 4^{5} = 1024$$
Potęgi i pierwiastki - najważniejsze wzory. 2. Potęgowanie - wprowadzenie. 3. Mnożenie potęg o tej samej podstawie. 4. Dzielenie potęg o tej samej podstawie. 5. Mnożenie potęg o tym samym wykładniku. Home NaukiMatematyka Paciowa zapytał(a) o 21:35 Liczba 4 pierwiastki z 2 pierwiastków z 2 zapisana w postaci potęgi to 2 do... ? powinno wyjść 2 do potęgi 2 i 3/4 To pytanie ma już najlepszą odpowiedź, jeśli znasz lepszą możesz ją dodać 1 ocena Najlepsza odp: 100% 0 0 Odpowiedz Najlepsza odpowiedź odpowiedział(a) o 21:38: 4√(2√2) = 2^2 * √(√8) = 2^2 * √(2^(3/2)) = 2^2 * (2^(3/2))^(1/2) = 2^2 * 2^(3/4) = 2^(2 + 3/4) Uważasz, że znasz lepszą odpowiedź? lub ohL0S.
  • wwq42wbi3a.pages.dev/104
  • wwq42wbi3a.pages.dev/340
  • wwq42wbi3a.pages.dev/121
  • wwq42wbi3a.pages.dev/130
  • wwq42wbi3a.pages.dev/205
  • wwq42wbi3a.pages.dev/9
  • wwq42wbi3a.pages.dev/279
  • wwq42wbi3a.pages.dev/309
  • wwq42wbi3a.pages.dev/308
  • 4 pierwiastki z 2 do potęgi 2